3.51 \(\int \frac {\sin ^3(c+d x)}{(a-a \sin ^2(c+d x))^2} \, dx\)

Optimal. Leaf size=33 \[ \frac {\sec ^3(c+d x)}{3 a^2 d}-\frac {\sec (c+d x)}{a^2 d} \]

[Out]

-sec(d*x+c)/a^2/d+1/3*sec(d*x+c)^3/a^2/d

________________________________________________________________________________________

Rubi [A]  time = 0.06, antiderivative size = 33, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {3175, 2606} \[ \frac {\sec ^3(c+d x)}{3 a^2 d}-\frac {\sec (c+d x)}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Int[Sin[c + d*x]^3/(a - a*Sin[c + d*x]^2)^2,x]

[Out]

-(Sec[c + d*x]/(a^2*d)) + Sec[c + d*x]^3/(3*a^2*d)

Rule 2606

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a/f, Subst[
Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] &&  !(IntegerQ[m/2] && LtQ[0, m, n + 1])

Rule 3175

Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Dist[a^p, Int[ActivateTrig[u*cos[e + f*x
]^(2*p)], x], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\sin ^3(c+d x)}{\left (a-a \sin ^2(c+d x)\right )^2} \, dx &=\frac {\int \sec (c+d x) \tan ^3(c+d x) \, dx}{a^2}\\ &=\frac {\operatorname {Subst}\left (\int \left (-1+x^2\right ) \, dx,x,\sec (c+d x)\right )}{a^2 d}\\ &=-\frac {\sec (c+d x)}{a^2 d}+\frac {\sec ^3(c+d x)}{3 a^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 31, normalized size = 0.94 \[ \frac {\frac {\sec ^3(c+d x)}{3 d}-\frac {\sec (c+d x)}{d}}{a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[c + d*x]^3/(a - a*Sin[c + d*x]^2)^2,x]

[Out]

(-(Sec[c + d*x]/d) + Sec[c + d*x]^3/(3*d))/a^2

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 28, normalized size = 0.85 \[ -\frac {3 \, \cos \left (d x + c\right )^{2} - 1}{3 \, a^{2} d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a-a*sin(d*x+c)^2)^2,x, algorithm="fricas")

[Out]

-1/3*(3*cos(d*x + c)^2 - 1)/(a^2*d*cos(d*x + c)^3)

________________________________________________________________________________________

giac [A]  time = 0.14, size = 28, normalized size = 0.85 \[ -\frac {3 \, \cos \left (d x + c\right )^{2} - 1}{3 \, a^{2} d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a-a*sin(d*x+c)^2)^2,x, algorithm="giac")

[Out]

-1/3*(3*cos(d*x + c)^2 - 1)/(a^2*d*cos(d*x + c)^3)

________________________________________________________________________________________

maple [A]  time = 0.24, size = 29, normalized size = 0.88 \[ \frac {-\frac {1}{\cos \left (d x +c \right )}+\frac {1}{3 \cos \left (d x +c \right )^{3}}}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(d*x+c)^3/(a-a*sin(d*x+c)^2)^2,x)

[Out]

1/d/a^2*(-1/cos(d*x+c)+1/3/cos(d*x+c)^3)

________________________________________________________________________________________

maxima [A]  time = 0.33, size = 28, normalized size = 0.85 \[ -\frac {3 \, \cos \left (d x + c\right )^{2} - 1}{3 \, a^{2} d \cos \left (d x + c\right )^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)^3/(a-a*sin(d*x+c)^2)^2,x, algorithm="maxima")

[Out]

-1/3*(3*cos(d*x + c)^2 - 1)/(a^2*d*cos(d*x + c)^3)

________________________________________________________________________________________

mupad [B]  time = 13.56, size = 26, normalized size = 0.79 \[ -\frac {{\cos \left (c+d\,x\right )}^2-\frac {1}{3}}{a^2\,d\,{\cos \left (c+d\,x\right )}^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(c + d*x)^3/(a - a*sin(c + d*x)^2)^2,x)

[Out]

-(cos(c + d*x)^2 - 1/3)/(a^2*d*cos(c + d*x)^3)

________________________________________________________________________________________

sympy [A]  time = 21.00, size = 156, normalized size = 4.73 \[ \begin {cases} - \frac {12 \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )}}{3 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 9 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 3 a^{2} d} + \frac {4}{3 a^{2} d \tan ^{6}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 9 a^{2} d \tan ^{4}{\left (\frac {c}{2} + \frac {d x}{2} \right )} + 9 a^{2} d \tan ^{2}{\left (\frac {c}{2} + \frac {d x}{2} \right )} - 3 a^{2} d} & \text {for}\: d \neq 0 \\\frac {x \sin ^{3}{\relax (c )}}{\left (- a \sin ^{2}{\relax (c )} + a\right )^{2}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(d*x+c)**3/(a-a*sin(d*x+c)**2)**2,x)

[Out]

Piecewise((-12*tan(c/2 + d*x/2)**2/(3*a**2*d*tan(c/2 + d*x/2)**6 - 9*a**2*d*tan(c/2 + d*x/2)**4 + 9*a**2*d*tan
(c/2 + d*x/2)**2 - 3*a**2*d) + 4/(3*a**2*d*tan(c/2 + d*x/2)**6 - 9*a**2*d*tan(c/2 + d*x/2)**4 + 9*a**2*d*tan(c
/2 + d*x/2)**2 - 3*a**2*d), Ne(d, 0)), (x*sin(c)**3/(-a*sin(c)**2 + a)**2, True))

________________________________________________________________________________________